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The solid solutions in the system Mnflg,-,,Tb,S, for 0 5 x 5 1 all have the orthorhombic MnY,S, 
structure, space group 071~2,. In the temperature range 77-300 K the materials are paramagnetic and 
the Curie-Weiss law is obeyed. At low temperatures, ca. 20 K, there is a deviation from linearity of the 
curve of x-l vs T. The curves of magnetization as a function of the magnetic field at 4.2 K are 
reminiscent of saturation curves, especially for low values ofx. The magnetic interactions between the 
metal ions are discussed. 

Introduction 

Compounds of the general formula AI&X4 
for A, B metal ions and X = 0, S can have 
one of ten structures. Steinfink et al. (1, 2) 
tried to outline a correlation between the 
crystal structure and some intrinsic proper- 
ties of the metal ions such as rA/rB and 
K,4H, which is a function of x.4 and xH, the 
electronegativity of A and B, respectively, 
and r,, which is the equilibrium distance. In 
the map showing the boundaries of the 
different possible structures, the cubic 
spinel, the cubic ThaP4, and the orthorhom- 
bit MnY,S, lie in a comparatively small 
area and have boundaries of mutual exis- 
tence. These structures occur for the 
heavier lanthauides (B ions), i.e., smaller- 
radius ions, and for medium-sized active 
metal ions: Mg2+, Mn’+, Cd*+ (A ions). 

The system (MnMg)Tb*& was chosen in 
order to study the effect of diluting the 
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magnetic ion Mn by Mg while keeping the 
crystal structure unchanged. The compo- 
nent materials of this system, viz., 
MnTb& and MgTb& both crystallize in 
the orthorhombic MnY,S, structure with 
about the same cell parameters at room 
temperature. A similar study was carried 
out by Heikens et al. for the systems 
(MnMg)Y& (3) and (MnMg)S (4). 

Experimental and Results 

The appropriate sulfides MnS, MgS, 
Tb,S, were weighed, ground, and mixed 
and introduced into a quartz ampoule. The 
ampoule was evacuated and sealed under a 
vacuum and heated at 1100°C for 48 hr. 
After quenching, the ampoule was broken 
open and chemical analysis by atomic ab- 
sorption spectrometry was carried out on 
the various materials. Stoichiometry was 
proven to within 1%. 

X-Ray diffraction patterns showed the 
existence of only one pure orthorhombic 
phase, MnY,S,, with the space group 
Cmc2, for the entire range 0 I x 5 1. 
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Patrie and Chevalier (5) have reported the 
crystal structure of the two pure compo- 
nents within a family of orthorhombic com- 
pounds. Table I gives the cell parameters 
found and compares them to those given in 
the literature. As seen from Table I the 
differences between the cell parameters are 
within 0.01 A and thus for all practical 
purposes it is assumed that the cell con- 
stants are identical for the two pure compo- 
nents and for the solid solutions obtained 
therefrom. 

Magnetic data were collected for all the 
materials in a high- and a low-temperature 
range: 77-300 and 4.2-50 K. All the mate- 
rials are paramagnetic and they obey the 
Curie-Weiss law in the high-temperature 
range. The Curie constant, C, and the Curie 
temperature, 8, are shown in Table II. The 
effective moment of Tb3+ is 9.72 pB and of 
MI?+, 5.92 pB. 

The Curie constant was calculated from 
the relative weights of the magnetic ions in 
the compound: 

C ca1c. = 
x * &(Mn*+) + 2 . &(Tb+3) . 

8.06 

For low temperatures an unexpected 
phenomenon is observed. At 4.2 K and for 
field strengths up to 15 kOe the magnetiza- 
tion M vs field H curves show a stronger 
approach to saturation for x = 0, viz., for 
MgTb2S4, and a very weak one for x = 1, 
viz., for MnTb,S,, while all other interme- 
diate x’s are arranged between the two 
extremes (Fig. 1). The reciprocal molar 
susceptibility vs temperature in the range 

TABLE I 

CELL PARAMETERS OF MnTb&, AND MgTb,$ 

a (A) b 6) c (A) Reference 

MnTb& 

WifJbS, 

3.79 12.76 12.65 This work 
3.78 12.76 12.63 (5) 

3.79 12.76 12.64 This work 
3.78 12.74 12.62 (5) 

TABLE II 

C AND 0 FOR Mn,Mg,-,Tb,S, 

x 

0 0.25 0.5 0.75 1.0 

c ObS. 23.8 25.4 27.0 27.5 28.1 
c ea,c. 23.4 24.5 25.6 26.7 28.0 
NW -3.0 -4.7 -4.5 -6.8 -4.0 

4.2-50 K shows positive asymptotic curve’s 
with a small Curie-Weiss temperature.-The 
magnetization vs temperature shows a ten- 
dency toward magnetic ordering, this ten- 
dency decreasing monotonously with the 
amount of Mn*+ substitution (increasing 
values of x) and nearly disappearing at the 
limit for x = 1. This behavior is demon- 
strated in Figs. 2 and 3 for MgTb,S, and 
MnTb,S,, respectively, as representative 
examples. 

Discussion 

In the system Mn,Mg,-,Tb,S,, as x de- 
creases Mg* + ion exchange for Mn2+ ions 
and for x = 0 the manganese magnetic 
sublattice disappears; leaving only the ter- 

FIG. 1. M vs H for the system Mn,Mg,&Tb& at 4.2 
K. 
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FIG. 2. M and x-’ vs T for MgTb& for various field 
strengths. 

bium sublattice. For intermediate values of 
x both sublattices coexist. This nonmag- 
netic dilution makes possible the study of 
Mn-Tb interactions if they exist. In his 
thesis (6) and a subsequent report (3) 
Heikens studied a similar ot-thorhombic 
system containing only one magnetic ion: 
Mn,rMg,-,rY,S,. He revealed the presence 
of strongly negative Mn-Mn exchange in- 
teractions for x = 1, while for the dilute 
system there existed isolated Mn ions and 
finite clusters, made up of four to six mem- 
bers of exchange-coupled Mn ions. 

In Fig. 1 for small values of x the magne- 
tization moment approaches saturation for 
a field of 17 kOe. Also, at low field the 
moment of MnTb& reaches only -30% of 
the value for MgTb& Comparison of Figs. 
2 and 3 shows that for a temperature range 
of 6- 15 K at low field, 2 kOe, the moment 
for MgTb& jumps 4.5fold while that for 
MnTb& changes by 1.5-fold only. 

M,,, is the saturation moment estimated 
by plotting the values obtained for M from 
12-17 kOe vs H-2 and extrapolation to H-2 
+ 0 (7). For MgTb&, M,,, is = 10 pB 
and for MnTb,S,, M,,, = 5 pB. The two 

figures mentioned above and these esti- 
mated values justify the assumption that 
the Mn-Tb interaction is antiferromag- 
netic and that the Tb-Tb interaction is 
ferromagnetic or canted ferromagnetic. 

The compounds under discussion are 
orthorhombic, of comparatively low sym- 
metry, and the Tb ions occupy two different 
sites-prismatic and octahedral. Thus, it is 
probable that the splitting of the J level will 
be maximal and the Stark levels will be 
singlets. In other words the effective satu- 
ration moment can reach 9 pB at the limit 
only. The value of ca. 10 pB for two ions of 
Tb3+ in MgTb& results from a canted 
ferromagnetic interaction or another posi- 
tive exchange. The value of ca. 5 ~~ in the 
case of MnTb,S, is the result of positive 
Tb-Tb and negative (resultant) Tb-Mn 
exchange. The diluted system Mn, 
Mg,-,Tb,S, shows an intermediate be- 
havior between the two extreme cases (x = 
0, x = 1). When x decreases toward zero, 
the value of the magnetization as a function 
of the magnetic field increases. Also for low 
fields -1 kOe, the curves are very steep for 
x = 0, 0.25 and level off as x increases. All 
this substantiates the idea that while the 
nonmagnetic Mg” + ions do not interfere 
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FIG. 3. M and x-’ vs T for MnTb,S, for various field 
strengths. 
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with the positive Tb-Tb interaction, the 
negative Mn-Tb interaction interferes, re- 
ducing the overall magnetization with in- 
creasing content of Mn. It cannot be ruled 
out that a negative Mn-Mn exchange can 
also exist. 

In conclusion, it was shown that diluting 
a magnetic system helps in evaluating the 
exchange interactions between the mag- 
netic species. 
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